Loading... ### CVPR 2025 | 序号 | 标题 | 方法分类 | 论文链接 | 代码链接 | 是否可复现 | | ---- | ------------------------------------------------------------ | ------------ | ------------------------------------------------------------ | ------------------------------------------------------------ | ---------- | | 1 | Any6D: Model-free 6D Pose Estimation of Novel Object | 任意物体方法 | [https://arxiv.org/abs/2503.18673](https://arxiv.org/abs/2503.18673) | [https://github.com/taeyeopl/Any6D](https://github.com/taeyeopl/Any6D) | | | 2 | Co-op: Correspondence-based Novel Object Pose Estimation | 任意物体方法 | [https://arxiv.org/abs/2503.17731](https://arxiv.org/abs/2503.17731) | 未开源 | | | 3 | CRISP: Object Pose and Shape Estimation with Test-Time Adaptation | 实例级方法 | [https://arxiv.org/abs/2412.01052](https://arxiv.org/abs/2412.01052) | [https://github.com/MIT-SPARK/CRISP](https://github.com/MIT-SPARK/CRISP) | | | 4 | GCE-Pose: Global Context Enhancement for Category-level Object Pose Estimation | 类别级方法 | [https://arxiv.org/abs/2502.04293](https://arxiv.org/abs/2502.04293) | 未开源 | | | 5 | GIVEPose: Gradual Intra-class Variation Elimination for RGB-based Category-Level Object Pose Estimation | 类别级方法 | [https://arxiv.org/abs/2503.15110](https://arxiv.org/abs/2503.15110) | [https://github.com/ziqin-h/GIVEPose](https://github.com/ziqin-h/GIVEPose) | | | 6 | iG-6DoF: Model-free 6DoF Pose Estimation for Unseen Object via Iterative 3D Gaussian Splatting | 任意物体方法 | [https://openaccess.thecvf.com/content/CVPR2025/papers/Cao_iG-6DoF_Model-free_6DoF_Pose_Estimation_for_Unseen_Object_via_Iterative_CVPR_2025_paper.pdf](https://openaccess.thecvf.com/content/CVPR2025/papers/Cao_iG-6DoF_Model-free_6DoF_Pose_Estimation_for_Unseen_Object_via_Iterative_CVPR_2025_paper.pdf) | 未开源 | | | 7 | Leveraging Global Stereo Consistency for Category-Level Shape and 6D Pose Estimation from Stereo Images | 类别级方法 | [https://openaccess.thecvf.com/content/CVPR2025/papers/Qiu_Leveraging_Global_Stereo_Consistency_for_Category-Level_Shape_and_6D_Pose_CVPR_2025_paper.pdf](https://openaccess.thecvf.com/content/CVPR2025/papers/Qiu_Leveraging_Global_Stereo_Consistency_for_Category-Level_Shape_and_6D_Pose_CVPR_2025_paper.pdf) | 未开源 | | | 8 | ONDA-Pose: Occlusion-Aware Neural Domain Adaptation for Self-Supervised 6D Object Pose Estimation | 实例级方法 | [https://openaccess.thecvf.com/content/CVPR2025/papers/Tan_ONDA-Pose_Occlusion-Aware_Neural_Domain_Adaptation_for_Self-Supervised_6D_Object_Pose_CVPR_2025_paper.pdf](https://openaccess.thecvf.com/content/CVPR2025/papers/Tan_ONDA-Pose_Occlusion-Aware_Neural_Domain_Adaptation_for_Self-Supervised_6D_Object_Pose_CVPR_2025_paper.pdf) | 未开源 | | | 9 | One2Any: One-Reference 6D Pose Estimation for Any Object | 任意物体方法 | [https://arxiv.org/pdf/2505.04109](https://arxiv.org/pdf/2505.04109) | [https://github.com/lmy1001/One2Any](https://github.com/lmy1001/One2Any) | | | 10 | Pos3R: 6D Pose Estimation for Unseen Objects Made Easy | 任意物体方法 | [https://openaccess.thecvf.com/content/CVPR2025/papers/Deng_Pos3R_6D_Pose_Estimation_for_Unseen_Objects_Made_Easy_CVPR_2025_paper.pdf](https://openaccess.thecvf.com/content/CVPR2025/papers/Deng_Pos3R_6D_Pose_Estimation_for_Unseen_Objects_Made_Easy_CVPR_2025_paper.pdf) | 未开源 | | | 11 | RefPose: Leveraging Reference Geometric Correspondences for Accurate 6D Pose Estimation of Unseen Objects | 任意物体方法 | [https://arxiv.org/pdf/2505.10841](https://arxiv.org/pdf/2505.10841) | 未开源 | | | 12 | Rethinking Correspondence-based Category-Level Object Pose Estimation | 类别级方法 | [https://openaccess.thecvf.com/content/CVPR2025/papers/Ren_Rethinking_Correspondence-based_Category-Level_Object_Pose_Estimation_CVPR_2025_paper.pdf](https://openaccess.thecvf.com/content/CVPR2025/papers/Ren_Rethinking_Correspondence-based_Category-Level_Object_Pose_Estimation_CVPR_2025_paper.pdf) | 空仓库:[https://github.com/RenHuan1999/SpotPose](https://github.com/RenHuan1999/SpotPose) | | | 13 | SCFlow2: Plug-and-Play Object Pose Refiner with Shape-Constraint Scene Flow | 实例级方法 | [https://arxiv.org/pdf/2504.09160](https://arxiv.org/pdf/2504.09160) | [https://github.com/W-QY/SCFlow2](https://github.com/W-QY/SCFlow2) | | | 14 | Structure-Aware Correspondence Learning for Relative Pose Estimation | 任意物体方法 | [https://arxiv.org/pdf/2503.18671](https://arxiv.org/pdf/2503.18671) | 空仓库:[https://github.com/Cyhhzo02/SAC-Pose-code](https://github.com/Cyhhzo02/SAC-Pose-code) | | | 15 | UA-Pose: Uncertainty-Aware 6D Object Pose Estimation and Online Object Completion with Partial References | 实例级方法 | [https://arxiv.org/pdf/2506.07996](https://arxiv.org/pdf/2506.07996) | 未开源 | | | 16 | UNOPose: Unseen Object Pose Estimation with an Unposed RGB-D Reference Image | 任意物体方法 | [https://arxiv.org/pdf/2411.16106](https://arxiv.org/pdf/2411.16106) | [https://github.com/shanice-l/UNOPose](https://github.com/shanice-l/UNOPose) | | ### ICCV 2025 | 序号 | 标题 | 方法分类 | 论文链接 | 代码链接 | 是否可复现 | | ---- | ------------------------------------------------------------ | ------------ | ------------------------------------------------------------ | ------------------------------------------------------------ | ---------- | | 1 | 6DOPE-GS: Online 6D Object Pose Estimation using Gaussian | 实例级方法 | [https://arxiv.org/pdf/2412.01543](https://arxiv.org/pdf/2412.01543) | 未开源 | | | 2 | BoxDreamer: Dreaming Box Corners for Generalizable Object Pose Estimation | 任意物体方法 | [https://arxiv.org/pdf/2504.07955](https://arxiv.org/pdf/2504.07955) | [https://github.com/zju3dv/BoxDreamer](https://github.com/zju3dv/BoxDreamer) | | | 3 | CleanPose: Category-Level Object Pose Estimation via Causal Learning and Knowledge Distillation | 类别级方法 | [https://arxiv.org/pdf/2502.01312](https://arxiv.org/pdf/2502.01312) | [https://github.com/chrislin0621/CleanPose](https://github.com/chrislin0621/CleanPose) | | | 4 | Deterministic Object Pose Confidence Region Estimation | 实例级方法 | [https://arxiv.org/pdf/2506.22720](https://arxiv.org/pdf/2506.22720) | 未开源 | | | 5 | Environment-Agnostic Pose: Generating Environment-independent Object Representations for 6D Pose Estimation | 实例级方法 | | 空仓库:[https://github.com/acmff22/EA6D](https://github.com/acmff22/EA6D) | | | 6 | HccePose(BF): Predicting Front & Back Surfaces to Construct Ultra-Dense 2D-3D Correspondences for Pose Estimation | 实例级方法 | [https://arxiv.org/pdf/2510.10177](https://arxiv.org/pdf/2510.10177) | [https://github.com/WangYuLin-SEU/HCCEPose](https://github.com/WangYuLin-SEU/HCCEPose) | | | 7 | Joint Learning of Pose Regression and Denoising Diffusion with Score Scaling Sampling for Category-level 6D Pose Estimation | 类别级方法 | [https://arxiv.org/pdf/2510.04125](https://arxiv.org/pdf/2510.04125) | 未开源 | | | 8 | MixRI: Mixing Features of Reference Images for Novel Object Pose Estimation | 任意物体方法 | | 未开源 | | | 9 | RayPose: Ray Bundling Diffusion for Template Views in Unseen 6D Object Pose Estimation | 任意物体方法 | [https://www.arxiv.org/pdf/2510.18521](https://www.arxiv.org/pdf/2510.18521) | 未开源 | | | 10 | Unified Category-Level Object Detection and Pose Estimation from RGB Images using 3D Prototypes | 类别级方法 | [https://arxiv.org/pdf/2508.02157](https://arxiv.org/pdf/2508.02157) | 未开源 | | ### NIPS 2025 | 序号 | 标题 | 方法分类 | 论文链接 | 代码链接 | 是否可复现 | | ---- | ------------------------------------------------------------ | ------------ | ------------------------------------------------------------ | -------- | ---------- | | 1 | RFMPose: Generative Category-level Object Pose Estimation via Riemannian Flow Matching | 类别级方法 | 未开源 | | | | 2 | SingRef6D: Monocular Novel Object Pose Estimation with a Single RGB Reference | 任意物体方法 | [https://arxiv.org/pdf/2509.21927](https://arxiv.org/pdf/2509.21927) | | | ### AAAI 2025 | 序号 | 标题 | 方法分类 | 论文链接 | 代码链接 | 是否可复现 | | ---- | ------------------------------------------------------------ | ---------- | ------------------------------------------------------------ | -------- | ---------- | | 1 | KeyPose: Category-Level 6D Object Pose Estimation with Self-Adaptive Keypoints | 类别级方法 | [https://ojs.aaai.org/index.php/AAAI/article/view/33046/35201](https://ojs.aaai.org/index.php/AAAI/article/view/33046/35201) | 未开源 | | | 2 | Universal Features Guided Zero-Shot Category-Level Object Pose Estimation | 类别级方法 | [https://arxiv.org/pdf/2501.02831](https://arxiv.org/pdf/2501.02831) | 未开源 | | ### MM 2025 | 序号 | 标题 | 方法分类 | 论文链接 | 代码链接 | 是否可复现 | | ---- | ------------------------------------------------------------ | ------------ | ------------------------------------------------------------ | -------- | ---------- | | 1 | CLIP-6D: Empowering CLIP as a Zero-Shot 6D Pose Estimator Through Generalizable Object-Specific Representations | 任意物体方法 | [https://dl.acm.org/doi/pdf/10.1145/3746027.3754497](https://dl.acm.org/doi/pdf/10.1145/3746027.3754497) | 未开源 | | ### ICRA 2025 | 序号 | 标题 | 方法分类 | 论文链接 | 代码链接 | 是否可复现 | | ---- | ------------------------------------------------------------ | ---------- | ------------------------------------------------------------ | ------------------------------------------------------------ | ---------- | | 1 | A Unified End-to-End Network for Category-Level and Instance-Level Object Pose Estimation from RGB Images | 类别级方法 | [https://ieeexplore.ieee.org/document/11128247](https://ieeexplore.ieee.org/document/11128247) | 未开源 | | | 2 | MonoDiff9D: Monocular Category-Level 9D Object Pose Estimation via Diffusion Model | 类别级方法 | [https://ieeexplore.ieee.org/document/11127837](https://ieeexplore.ieee.org/document/11127837) | [https://github.com/CNJianLiu/MonoDiff9D](https://github.com/CNJianLiu/MonoDiff9D) | | | 3 | Occlusion-Aware 6D Pose Estimation with Depth-Guided Graph Encoding and Cross-Semantic Fusion for Robotic Grasping | 实例级方法 | [https://ieeexplore.ieee.org/document/11128248](https://ieeexplore.ieee.org/document/11128248) | 未开源 | | ### 方法分类 #### 实例级方法 1. CVPR 2025: 1. CRISP: Object Pose and Shape Estimation with Test-Time Adaptation 2. ONDA-Pose: Occlusion-Aware Neural Domain Adaptation for Self-Supervised 6D Object Pose Estimation 3. SCFlow2: Plug-and-Play Object Pose Refiner with Shape-Constraint Scene Flow 4. UA-Pose: Uncertainty-Aware 6D Object Pose Estimation and Online Object Completion with Partial References 2. ICCV 2025: 1. 6DOPE-GS: Online 6D Object Pose Estimation using Gaussian 2. Deterministic Object Pose Confidence Region Estimation 3. Environment-Agnostic Pose: Generating Environment-independent Object Representations for 6D Pose Estimation 4. HccePose(BF): Predicting Front & Back Surfaces to Construct Ultra-Dense 2D-3D Correspondences for Pose Estimation 3. NIPS 2025: 1. 无 4. AAAI 2025: 1. 无 5. MM 2025: 1. 无 6. ICRA 2025: 1. Occlusion-aware 6D Pose Estimation with Depth-guided Graph Encoding and Cross-semantic Fusion for Robotic Grasping #### 类别级方法 1. CVPR 2025: 1. GCE-Pose: Global Context Enhancement for Category-level Object Pose Estimation 2. GIVEPose: Gradual Intra-class Variation Elimination for RGB-based Category-Level Object Pose Estimation 3. Leveraging Global Stereo Consistency for Category-Level Shape and 6D Pose Estimation from Stereo Images 4. Rethinking Correspondence-based Category-Level Object Pose Estimation 2. ICCV 2025: 1. CleanPose: Category-Level Object Pose Estimation via Causal Learning and Knowledge Distillation 2. Joint Learning of Pose Regression and Denoising Diffusion with Score Scaling Sampling for Category-level 6D Pose Estimation 3. Unified Category-Level Object Detection and Pose Estimation from RGB Images using 3D Prototypes 3. NIPS 2025: 1. RFMPose: Generative Category-level Object Pose Estimation via Riemannian Flow Matching 4. AAAI 2025: 1. KeyPose: Category-Level 6D Object Pose Estimation with Self-Adaptive Keypoints 2. Universal Features Guided Zero-Shot Category-Level Object Pose Estimation 5. MM 2025: 1. 无 6. ICRA 2025: 1. A Unified End-to-end Network for Category-level and Instance-level Object Pose Estimation from RGB Images 2. MonoDiff9D: Monocular Category-Level 9D Object Pose Estimation via Diffusion Model #### 任意物体方法 1. CVPR 2025: 1. Any6D: Model-free 6D Pose Estimation of Novel Object 2. Co-op: Correspondence-based Novel Object Pose Estimation 3. iG-6DoF: Model-free 6DoF Pose Estimation for Unseen Object via Iterative 3D Gaussian Splatting 4. One2Any: One-Reference 6D Pose Estimation for Any Object 5. Pos3R: 6D Pose Estimation for Unseen Objects Made Easy 6. RefPose: Leveraging Reference Geometric Correspondences for Accurate 6D Pose Estimation of Unseen Objects 7. Structure-Aware Correspondence Learning for Relative Pose Estimation 8. UNOPose: Unseen Object Pose Estimation with an Unposed RGB-D Reference Image 2. ICCV 2025: 1. BoxDreamer: Dreaming Box Corners for Generalizable Object Pose Estimation 2. MixRI: Mixing Features of Reference Images for Novel Object Pose Estimation 3. RayPose: Ray Bundling Diffusion for Template Views in Unseen 6D Object Pose Estimation 3. NIPS 2025: 1. SingRef6D: Monocular Novel Object Pose Estimation with a Single RGB Reference 4. AAAI 2025: 1. 无 5. MM 2025: 1. CLIP-6D: Empowering CLIP as a Zero-Shot 6D Pose Estimator Through Generalizable Object-Specific Representations 6. ICRA 2025: 1. 无 最后修改:2025 年 11 月 04 日 © 允许规范转载 打赏 赞赏作者 支付宝微信 赞 如果觉得我的文章对你有用,请随意赞赏。